Modeling, Simulation and Deployment

Dr. Michael Tiller Xogeny

Am latthe wrong talk?

Modeling and "the V"

- » Modelica is a modeling language that is:
 - > Vendor-neutral
 - > Multi-domain
 - > Object-oriented
 - > Multi-formalism
- » Modelica is like LEGOs for building mathematical system models

Acausal Modeling

Flexibility

Only 1 state (vs. 2 previously)

No feedback loop

Differentiation block

Completely different model!

Learning vs. Doing

-<u>28</u> 20

-<u>14</u> 60

- 56

4x7=28

2x7=14

8x7=56

Block Diagrams

- » Textbook equations have to be constantly reformulated depending on context.
- » Different "blocks" with different combinations of inputs and outputs.
- » Tedious, timeconsuming and error prone.
 0.1428
 7)1.000000
 1x7=7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 8
 8
 9
 1
 9
 1
 1
 1
 7
 7
 7
 7
 1
 1
 1
 2
 7
 1
 1
 2
 7
 1
 1
 2
 2
 1
 2
 1
 2
 2
 2
 3
 1
 2
 2
 3
 1
 2
 3
 2
 3
 4
 3
 4
 4
 4
 4
 7
 1
 7
 1
 7
 1
 8
 1
 8
 1
 8
 1
 8
 1
 8
 1
 8
 1
 8
 8
 8
 9
 8
 9
 8
 9
 8
 9
 8
 9
 8
 9
 8
 9
 9
 8
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9</
- » Long-division

Acausal Modeling

- » Textbook equations are captured in reusable object-oriented component models.
- » A single component for all causalities (e.g. planetary gear).
- » Fun, fast and automated (and efficient!)
- » Calculator

DAES

- » Natural way to describe physical behavior
 - > Multi-body systems (joint constraints)
 - > Fluid problems (ideal gas law)
 - > Easy to express many important idealizations (stiff springs)
- » Difficult to solve in a purely numerical way
 - > Consistent initial conditions
 - > High index DAEs
- » Preferred solution methods:
 - Index reduction (Pantelides' algorithm)
 - > Dummy derivative method
 - > Turn DAE into ODEs (or index-1 DAEs)

Simulation

In the beginning...

» What were computers invented for?

ENIAC (circa 1947-1955)

"The Giant Brain"

Artillery Firing Tables

» Simulation is as old as computing itself.

Solution Method

» Originally, solution schemes (integration) was integrated with problem:

$$V = V + A*dt;$$

 $X = X + V*dt;$

» Eventually, problem and solver were cleanly partitioned:

$$\dot{x}(t) = f(x, u, t); x_{n+1} = x_n + hf(t_n + \frac{h}{2}, x_n + \frac{hf(t_n, y_n)}{2})$$

- » Performance:
 - > (Cost of evaluation f) × (# of times f is evaluated)

Evaluation Costs

» The Six Blind Men and The Elephant

Don't think of f as a black-box numerical function, think of it as a representation of your system that conveys a complete representation of your problem *and then optimize it*.

I gilvgiya Qya oyat harabele, vyoin giva avateva artuno belers.

Symbolic Manipulation

- » Umbrella topic for:
 - > Equation sorting
 - > Index reduction
 - > State selection
 - > Substitutions
 - > Tearing

Requires structural information

- » Goal is not a symbolic/analytical solution
- » Reduces the DAEs down to ODEs
 - More natural way to express behavior
 - > Reuse established numerical solvers
 - > Heavily optimize evaluation costs
- » Opinion: it will be impossible for purely numerical tools to compete.

Generating Equations

```
step.n.v = resistor.n.v
resistor.n.v = inductor.n.v
                                            Across variables
inductor.n.v = capacitor.n.v
                                            (equated)
capacitor.n.v = ground.n.v
                                                                          Through variables
step.n.i + resistor.n.i + inductor.n.i + capacitor.n.i + ground.n.i = 0
                                                                           (summed)
step.p.v = resistor.p.v
resistor.p.v = inductor.p.v
inductor.p.v = capacitor.p.v
step.p.i + resistor.p.i + inductor.p.i + capacitor.p.i = 0
                                                                                      inductor
                                                               step
step.p.i + step.n.i = 0
step.p.i = f(t)
resistor.p.i + resistor.n.i = 0
resistor.p.i* resistor.R = resistor.p.v - resistor.n.v
                                                                                 ground
inductor. p.i + inductor.n.i = 0
der(inductor.p.i)*inductor.L = inductor.p.v - industor.n.v
capacitor.p.i + capacitor.n.i = 0
capacitor.p.i = capacitor.C*[der(capacitor.p.v) - der(capacitor.n.v)]
ground.n.v = 0
```

Equation Structure

```
step.n.v = resistor.n.v

resistor.n.v = inductor.n.v

inductor.n.v ← capacitor.n.v

capacitor.n.v ← ground.n.v
```

ground.n.v $\leftarrow 0$

step.n.i + resistor.n.i + inductor.n.i + capacitor.n.i + ground.n.i = 0

Structure of Equations

```
step.p.v = resistor.p.v
resistor.p.v = inductor.p.v
inductor.p.v = capacitor.p.v
step.p.i + resistor.p.i + inductor.p.i + capacitor.p.i = 0
step.p.i + step.n.i = 0
step.p.i = f(t)
resistor.p.i + resistor.n.i = 0
resistor.p.i*resistor.R = resistor.p.v - resistor.n.v
inductor.p.i + inductor.n.i = 0
der(inductor.p.i)*inductor.L = inductor.p.v - industor.n.v
capacitor.p.i + capacitor.n.i = 0
capacitor.p.i*capacitor.C = der(capacitor.p.v) - der(capacitor.n.v)
```

Sorted Structure

ground.n.v 0 capacitor .n.v ground.n.v capacitor .n.v inductor.n.v resistor.n.v inductor.n.v resistor.n.v step.n.v step.p.i f(t)step.n.i -step.p.iinductor.p.v capacitor.p.v resistor.p.v inductor.p.v := step.p.v resistor.p.v der(inductor.p.i) (inductor.p.i – inductor.n.v) / inductor.L inductor.n.i -inductor.p.i resistor.p.i (resistor.p.v – resistor.n.v) / resistor.R resistor.n.i - resistor.p.i capacitor.p.i - step.p.i - resistor.p.i - inductor.p.i capacitor .n.i - capacitor .p.i der(capacitor.p.v) capacitor.p.i/capacitor.C | - step.n.i - resistor.n.i - inductor.n.i - capacitor.n.i | ground.n.i

Functional Mockup Interface (FMI)

FMI

- » Functional Mockup Interface (FMI)
- » Initiated by Daimler as an industry wide and vendor neutral alternative to (MathWorks) S-functions.
- » Initially funded by EU. Eventually became an official Modelica Association project.
- » A way to exchange compiled models
 - Not really a modeling technology
 - > Limited "composability"
- » FMI 2.0-RC1 just released
 - > Support for discrete states
 - > Algebraic loops during events and initialization

FMU

- » Functional Mockup Unit FMU
- » Pre-compiled collection of files:
 - > Binaries (for various platforms)
 - > Source code (in provided)
 - > Resources (data files, etc)
 - > Documentation
 - > Model Description (XML file)
- » FMUs are instantiated
 - > Potentially multiple instances in same simulation
 - > Can be formulated for "Model Exchange" or "Co-simulation"

Architectural Shifts

- » Reaching limitations of classic Von Neumann architecture (CPU+memory).
- » Multi-core machines and cloud computer resources are becoming increasingly common.
- » Simulation is typically heavily sequential
- » Exploiting future computing resources:
 - > Thinking more about parallel computations
 - > Loosely coupled analyses
 - Cheaper computing and timing driving analyses like optimization, monte-carlo and other parallelizable types of analysis
 - > Model reduction could become more cost effective

- » Xogeny proprietary platform
- » Platform for running FMI compliant models "in the cloud"
- » Inspiration came from dynamic programming application where desktop resources weren't sufficient.
- » Easy path to model reduction, Monte-Carlo analysis, etc.
- » Wraps analyses in data management framework for persisting input and output data.

Deployment

User Experience

» It is worth the effort to organize features and capabilities around achieving a great user experience.

Model -> Application

- » Important to understand the business questions that need answering.
 - > Do you need one application or many?
- » Models are the "functions" to capture non-trivial relationships.
 - > Can be recombined in different ways depending on the use case.
- » Applications need to provide a clear path from models to questions/solutions.
- » Software architectures often tend toward monolithic applications.
- » Xogeny applications heavily leverage declarative representations and code generation.
 - > Don't write applications, write programs that write applications.

Web-Based Analyses

Interactivity

History

Heat Exchanger	X		Y		Width		Height	
Charge Air	0	mm	0	mm	700	mm	500	mm
Transmission Oil	0	mm	0	mm	595	mm	555	mm
Condensor	0	mm	0	mm	330	mm	200	mm
Radiator	0	mm	600	mm	400	mm	300	mm
1 8								
1								
					1			

History

Vehicle Data

Driveline Ratio	4.1	Final gear ratio rear			
Vehicle Body Mass	16000	kg ▼ Maximum value is 5000			
Front Tire Radius	0.3	m ▼ Undeformed radius - front wheel			
Front Tire Inertia	1	kg.m2 Inertia about the spin axis - front wheel			
Rear Tire Radius	0.3	m ▼ Undeformed radius - rear wheel			
Rear Tire Inertia	1	kg.m2 Inertia about the spin axis - rear wheel			
Drag Coefficient	0.38	Aerodynamic drag coefficient of car body			
Frontal Area	2.7	m2 Frontal area of car body			
Road Inclination	0	% Grade Inclination in the x direction			
Ambient Temperature	311	K ▼ Ambient temperature (inlet to the stack)			

Scale Factors

Drive Cycle Scaling	1	scaling factor for the drivecycle velocity
Engine Torque Scaling	1	Scaling of output torque >1 increases output torque

Heat Rejection

History

Temperatures Drive Cycle **Drive Cycle** 6000 6.0 Engine Speed [RPM] Selected Gear 5.0 5000 4000 4.0 3000 3.0 2000 2.0 1000 1.0 10 20 40 20 30 30 50 25 **Statistics** Vehicle Speed 20 **Cycle Duration** 15 50.0 seconds 10 **Fuel Economy** 17.69 MPG Peak Speed 20.2 MPH 10 20 30 40 50

Conclusions

- » Increasing pressure to connect CAD, CAE, requirements and system simulation.
- » Lots of compelling technologies out there that are not being leveraged.
 - > Competitive advantage in breaking away from legacy and capitalizing on these opportunities.
- » Highlight the value of modeling by making it accessible to everybody.
- » Exciting time for system simulation...

What Will You Build Today?

Questions?